JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain.

نویسندگان

  • Yong-Jing Gao
  • Ling Zhang
  • Omar Abdel Samad
  • Marc R Suter
  • Kawasaki Yasuhiko
  • Zhen-Zhong Xu
  • Jong-Yeon Park
  • Anne-Li Lind
  • Qiufu Ma
  • Ru-Rong Ji
چکیده

Our previous study showed that activation of c-jun-N-terminal kinase (JNK) in spinal astrocytes plays an important role in neuropathic pain sensitization. We further investigated how JNK regulates neuropathic pain. In cultured astrocytes, tumor necrosis factor alpha (TNF-alpha) transiently activated JNK via TNF receptor-1. Cytokine array indicated that the chemokine CCL2/MCP-1 (monocyte chemoattractant protein-1) was strongly induced by the TNF-alpha/JNK pathway. MCP-1 upregulation by TNF-alpha was dose dependently inhibited by the JNK inhibitors SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one) and D-JNKI-1. Spinal injection of TNF-alpha produced JNK-dependent pain hypersensitivity and MCP-1 upregulation in the spinal cord. Furthermore, spinal nerve ligation (SNL) induced persistent neuropathic pain and MCP-1 upregulation in the spinal cord, and both were suppressed by D-JNKI-1. Remarkably, MCP-1 was primarily induced in spinal cord astrocytes after SNL. Spinal administration of MCP-1 neutralizing antibody attenuated neuropathic pain. Conversely, spinal application of MCP-1 induced heat hyperalgesia and phosphorylation of extracellular signal-regulated kinase in superficial spinal cord dorsal horn neurons, indicative of central sensitization (hyperactivity of dorsal horn neurons). Patch-clamp recordings in lamina II neurons of isolated spinal cord slices showed that MCP-1 not only enhanced spontaneous EPSCs but also potentiated NMDA- and AMPA-induced currents. Finally, the MCP-1 receptor CCR2 was expressed in neurons and some non-neuronal cells in the spinal cord. Together, we have revealed a previously unknown mechanism of MCP-1 induction and action. MCP-1 induction in astrocytes after JNK activation contributes to central sensitization and neuropathic pain facilitation by enhancing excitatory synaptic transmission. Inhibition of the JNK/MCP-1 pathway may provide a new therapy for neuropathic pain management.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central neuron-glia interactions and neuropathic pain: overview of recent concepts and clinical implications.

Eduardo E. Benarroch, MD Neuropathic pain results from injury or disease causing dysfunction at any level of the somatosensory (primarily spinothalamic) system, including peripheral nociceptive axons, dorsal root ganglion (DRG), dorsal horn, spinothalamic pathway, and thalamus. The manifestations of neuropathic pain, including spontaneous pain, hyperalgesia, and thermal and mechanical allodynia...

متن کامل

TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways.

Spinal cord injury (SCI) frequently causes severe, persistent central neuropathic pain that responds poorly to conventional pain treatments. Brain-derived neurotrophic factor (BDNF) signaling appears to contribute to central sensitization and nocifensive behaviors in certain animal models of chronic pain through effects mediated in part by the alternatively spliced truncated isoform of the BDNF...

متن کامل

Review p 38 MAPK , microglial signaling , and neuropathic pain

Accumulating evidence over last several years indicates an important role of microglial cells in the pathogenesis of neuropathic pain. Signal transduction in microglia under chronic pain states has begun to be revealed. We will review the evidence that p38 MAPK is activated in spinal microglia after nerve injury and contributes importantly to neuropathic pain development and maintenance. We wil...

متن کامل

ATP-sensitive potassium channels alleviate postoperative pain through JNK-dependent MCP-1 expression in spinal cord

Although adenosine triphosphate-sensitive potassium (KATP) channels have been proven to be involved in regulating postoperative pain, the underlying mechanism remains to be investigated. In this study, we aimed to determine the role of spinal KATP channels in the control of mechanical hypersensitivity in a rat pain model, in which rats were subjected to skin/muscle incision and retraction (SMIR...

متن کامل

Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain.

A multiplex analysis for profiling the expression of candidate genes along with epigenetic modification may lead to a better understanding of the complex machinery of neuropathic pain. In the present study, we found that partial sciatic nerve ligation most remarkably increased the expression of monocyte chemotactic protein 3 (MCP-3, known as CCL7) a total of 33 541 genes in the spinal cord, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 13  شماره 

صفحات  -

تاریخ انتشار 2009